Горизонтальное и вертикальное масштабирование. Взгляд со стороны бизнес приложений. Вертикальное и горизонтальное масштабирование систем Масштабирование ит

Под масштабируемостью корпоративных систем подразумевается возможность наращивания их мощности путем подключения новых технических и программных средств без дополнительной доработки последних. Этот момент важен при использовании современных компьютерных и сетевых технологий. Можно привести пример распределенной обработки данных в центральном банке и его филиалах.

Масштабируемость достигается на различных уровнях: а) Техническом; б) Системном; в) Сетевом; г) СУБД; д) Прикладном. Для ОС масштабируемость означает, что ОС не привязана к однопроцессорной архитектуре процессора. В случае усложнения стоящих перед пользователем задач и расширения предъявляемых к компьютерной сети требований, ОС должна обеспечивать возможность добавления более мощных и производительных серверов и рабочих станций в корпоративной сети. Можно рассматривать масштабируемость технических средств, программных средств, масштабируемость системы в целом. В основе масштабируемости лежат такие технологии как: а) Международные стандарты; б) Сетевые и телекоммуникационные технологии; в) Операционные системы; г) Технология клиент/сервер и ряд других средств.

Конец работы -

Эта тема принадлежит разделу:

Компьютерные информационные технологии в управлении. Классификация систем управления

Цель КИС подготовка к использованию современных информационных технологий в рамках КИС как инструмента для решения научных и практических задач в.. Понятие информационной технологии Корпоративные информационные..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие информационной технологии. Корпоративные информационные технологии
Технология – сис-ма взаимосвязанных способов обработки материалов и приемов изготовления продукции в производственном процессе. Информационные технологии – система взаимосвязанных мет

Технология обработки информации. Понятие совместимости, открытости и модульности
Информация – совокупность фактов, явлений, событий, представляющих интерес, подлежащих регистрации и обработке. Это подразумевает наличие двух моментов: источник и приемник (потребитель) информации

Виды обеспечения информационных систем
Виды обеспечения АСОЭИ: а) Технические; б)Математические; в)Лингвистические; г)Программные. Информационное обеспечение – система классификации и кодирования информации, технологическая схема обрабо

Архитектура корпоративной информационной системы
Архитектура КИС состоит из нескольких уровней: а)Информационно-логический уровень–представляет собой совокупность потоков данных и центров (узлов) возникновения, потребления

Требования к корпоративным информационным системам
Процессы активного совершенствования технологий обработки информации являются следствием того, что к современным информационным системам (КИС) все чаще предъявляются следующие требования: а) структ

Неоднородность корпоративных информационных систем. Решения проблем неоднородности в корпоративных информационных системах
Важнейшую роль играют вопросы преодоления проблем неоднородности корпоративных систем и обеспечения совместимости компонент, входящих в ее состав. Неоднородность в вычислительных системах может про

Международные стандарты в области компьютерных информационных технологий
В настоящее время всемирное распространение получил комплекс стандартов на систему качества предприятия, разработанный ISO (International Standards Organization), точнее, техническим комитетом ISO/

Информационные модели объекта управления
Современное предприятие можно рассматривать как эффективный информационный центр, источниками информации которого являются внешняя и внутренняя деловая среда. Внешняя деловая среда –

Информационное обеспечение корпоративных информационных систем
Информационное обеспечение – система классификации и кодирования информации, технологическая схема обработки данных, нормативно-справочная информация, система документооборота и т.д. Информационное

Политика формирования информационных ресурсов как единого информационного пространства
Для обеспечения взаимодействия информационных ресурсов различного уровня необходимы: а) Использование современных информационных технологий; б) Современная транспортная информационная среда; в) Еди

Преимущества использования вычислительных систем
В результате использования многомашинных и многопроцессорных ВС оказывается возможным достичь следующих преимуществ:1) Повышение уровня производительности и получения быстродействи

Средства коммуникационной техники и средств связи
Средства коммуникационной техники обеспечивают одну из основных функций управленческой деятельности - передачу информации в рамках системы управления и обмен данными с внешней средой, предполагают

Операционные системы (ОС). Технологии ОС
Среди системных программ особое место занимает операционная система (ОС). Под операционной системой (ОС) (Operating System)понимают комплекс программ, осуществляющих управле

OS Unix и структурные решения в корпоративных информационных системах. Понятие мобильности
Начало разработок ОС Unix было положено фирмой Bell Laboratories в 1968 г. Была предложена многопользовательская 32-х разрядная ОС Unix для Main Frame. В 1976 г. компания AT&T (куда входила и B

Понятие компьютерных сетей и их характеристика
Компьютерная сеть – это комплекс территориально рассредоточенных ЭВМ, связанных между собой каналами передачи данных целях эффективного использования вычислительных ресурсов. Целесообразност

Состав компьютерных сетей
В состав компьютерных сетей входят технические, программные и информационные средства. То есть компьютерную сеть можно рассматривать как систему с распределенными по территории аппаратурными, прогр

Архитектура компьютерных сетей
В общем случае архитектуру компьютерных сетей можно рассматривать с двух точек зрения – это физическая организация компьютерной сети (топология сети) и организация сети на логическом уров

Компьютерные сети с выделенным сервером и их характеристика
Клиент-сервер - сетевая архитектура, в которой устройства являются либо клиентами, либо серверами. Клиентом является запрашивающая машина (обычно ПК), сервером- машина, которая отвеча

Структура глобальных компьютерных сетей
Глобальные сети (WAN, Wide Area Networks) это системы с широкополосными каналами и позволяют организовать взаимодействие между компьютерами на больших расстояниях. В идеале глобальная компьютерная

Масштабируемость компьютерных сетей
Масштабируемость – возможность наращивания ресурсов сети и абонентов. В компьютерных сетях с выделенным сервером, рабочие станции подключаются к выделенным серверам, а серверы, в свою очередь, груп

Протоколы Internet
Протокол в данном случае - это, образно говоря, «язык», используемый компьютерами для обмена данными при работе в сети. Чтобы различные компьютеры сети могли взаимодействовать, они должны «разговар

Адресация Internet
Интернет- всемирная система объединённых компьютерных сетей, построенная на использовании протокола IP и маршрутизации пакетов данных. Интернет образует глобальное информационное пространство, служ

Одиночные информационные системы реализуются, как правило, на автономном персональном компьютере (сеть не используется). Такая система может содержать несколько простых приложений, связанных общим информационным фондом, и рассчитана на работу одного пользователя или группы пользователей, разделяющих по времени одно рабочее место. Подобные приложения создаются с помощью так называемых настольных , или локальных , систем управления базами данных (СУБД). Среди локальных СУБД наиболее известными являются Clarion, Clipper, FoxPro, Paradox, dBase и Microsoft Access.

Групповые информационные системы ориентированы на коллективное использование информации членами рабочей группы и чаще всего строятся на базе локальной вычислительной сети. При разработке таких приложений используются серверы баз данных (называемые также SQL-серверами) для рабочих групп. Существует довольно большое количество различных SQL-серверов, как коммерческих, так и свободно распространяемых. Среди них наиболее известны такие серверы баз данных, как Oracle, DB2, Microsoft SQL Server, InterBase, Sybase, Informix.

Корпоративные информационные системы являются развитием систем для рабочих групп, они ориентированы на крупные компании и могут поддерживать территориально разнесенные узлы или сети. В основном они имеют иерархическую структуру из нескольких уровней. Для таких систем характерна архитектура клиент-сервер со специализацией серверов или же многоуровневая архитектура. При разработке таких систем могут использоваться те же серверы баз данных, что и при разработке групповых информационных систем. Однако в крупных информационных системах наибольшее распространение получили серверы Oracle, DB2 и Microsoft SQL Server. Для групповых и корпоративных систем существенно повышаются требования к надежности функционирования и сохранности данных. Эти свойства обеспечиваются поддержкой целостности данных, ссылок и транзакций в серверах баз данных.

Централизованная база данных или распределенная.

    Особенности проектирования Web -ориентированных систем в настоящее время

Scrum - это набор принципов, на которых строится процесс разработки, позволяющий в жёстко фиксированные небольшие промежутки времени (спринты от 2 до 4 недель) предоставлять конечному пользователю работающее ПО с новыми возможностями, для которых определён наибольший приоритет. Возможности ПО к реализации в очередном спринте определяются в начале спринта на этапе планирования и не могут изменяться на всём его протяжении. При этом строго-фиксированная небольшая длительность спринта придаёт процессу разработки предсказуемость и гибкость.

ORM - технология программирования, которая связывает базы данных с концепциями объектно-ориентированных языков программирования, создавая «виртуальную объектную базу данных».

Проблема: В объектно-ориентированном программировании объекты в программе представляют объекты из реального мира. Суть проблемы состоит в преобразовании таких объектов в форму, в которой они могут быть сохранены в файлах или базах данных, и которые легко могут быть извлечены в последующем, с сохранением свойств объектов и отношений между ними. Эти объекты называют «хранимыми» (англ. persistent ). Исторически существует несколько подходов к решению этой задачи.

Model-view-controller - архитектура программного обеспечения, в котороймодель данныхприложения,пользовательский интерфейси управляющая логика разделены на три отдельных компонента, так, что модификация одного из компонентов оказывает минимальное воздействие на другие компоненты.

К концу 2012 года более 50% приложений работающих на х86 платформе виртуализированы. Вместе с тем виртуализировано только 20% бизнес критических приложений.

Это из-за того что ИТ отделы не доверяют платформам виртуализации? Считают ли они платформы виртуализации не достаточно стабильными для поддержки работы критически важных приложений?

За последние 10 лет VMware доказала что виртуализация это уже реальность, и, фактически, виртуализированные приложения часто более стабильны, когда работают на инфраструктуре под управлением VMware.

Тогда если доверие или стабильность не являются проблемой в чём же причина того что ИТ отделы еще не виртуализировали оставшиеся приложения?

Scale out
Scale out или горизонтальное масштабирование - добавление новых ресурсов в инфраструктуру, например, серверов в кластер.

Так как цены продолжают падать, а производительность расти то дешёвые, commodity (широкого потребления) сервера являются идеальным решением для горизонтального масштабирования, и могут быть собраны в большие кластера для объединения вычислительных ресурсов.

Последние семь лет архитекторы инфраструктур на VMware молились на горизонтальное масштабирование. Кто-то может аргументировать за использование именного этого подхода, но он тоже имеет свои нюансы, и всё зависит от требований бизнеса. Плюс горизонтального масштабирования в том, что commodity сервера дёшевы, и в случае выхода сервера из строя это влияет на небольшое количество ВМ. Минус в бОльших затратах на лицензии на vSphere, большие требования к площади ЦОД, и обычно такие commodity сервера не обладают большими вычислительными ресурсами.

Scale up
Вертикальное масштабирование - добавление вычислительных ресурсов в какой-то уже используемый сервер. Обычно это процессоры или оперативная память.

Обычно такие сервера довольно мощные - с поддержкой 4 процессоров и 512ГБ памяти. Кроме того встречаются системы с 8 процессорами и 1ТБ памяти, а некоторым повезло увидеть даже 16-ти процессорные сервера с 4ТБ памяти. И нет, это не мейнфреймы или что-то типа того, это сервера на основе классической х86 архитектуры.

Переход ко второй волне виртуализации, которая обеспечивает гибкость предоставляемую данной технологией для бизнес критических приложений, оказывает сегодня огромное давление на используемые сегодня инфраструктуры VMware из-за следующих проблем:

  • Недостаточные возможности по масштабированию. Нагрузки с высокими требованиями к объёму вычислительных ресурсов являются проблемой из-за ограниченного объёма ресурсов доступных с дешёвыми commodity серверами.
  • Недостаточная надёжность. Commodity оборудование или аппаратное обеспечение использующее такие компоненты может быть менее надёжным. Проблему надёжности можно решить с помощью функций о которых я расскажу в следующих статьях.
  • Увеличение сложности управления и рост операционных расходов. Легче управлять 100 серверами, а не 1000, ну и, как следствие, 10 серверами управлять проще чем 100. Тоже самое касается и операционных расходов - 10 серверов гораздо дешевле поддерживать чем 100.
Вертикальное масштабирование отлично подходит для бизнес критических приложений с их огромными требованиями к ресурсам. Привет, Monster VM! Все эти прожорливые критичные базы данных, огромные ERP системы, системы аналитики больших данных, JAVA приложения и так далее и тому подобное получат прямую выгоду от вертикального масштабирования.

С выходом vSphere 5 количество ресурсов, доступных одной ВМ выросло в 4 раза.

А с выходом vSphere 5.1 монструозные ВМ могут быть еще монструознее.

Для того чтобы vSphere 5.1 могла запустить ВМ-монстра планировщику необходимо иметь и спланировать запуск потоков на 64 физических процессорах. Не так много серверов, которые могут поддерживать столько ядер, а серверов с поддержкой 16 сокетов и 160 ядер и того меньше.

Всего существует два типа вертикального масштабирования серверов: glueless и glued. На русский язык эти слова переводятся так: без интегрирующих технологий и с интегрирующими технологиями, соответственно.

Glueless архитектура
Данная архитектура была разработана в Intel, и представлена в Intel Xeon E7.

Для связи между устройствами ввода-вывода, сетевыми интерфейсами и процессорам используется специально разработанная шина QPI.

В серверах с 4-мя процессоров все они соединяются между собой напрямую через эту шину. Glueless процессор использует один из каналов для подключения процессора к интерфейсам ввода-вывода, а остальные три для подключения к соседним процессорам.

В 8-ми процессорном сервере каждый процессор напрямую подключается к трём соседним, и через другой процессор к другим четырём.

Преимущества такой архитектуры:

  • Нет необходимости в специальной разработке или специализации у производителя серверов
  • Любой производитель серверов может выпускать 8-ми процессорные сервера
  • Снижается стоимость как 4-ёх так и 8-ми процессорного сервера
Недостатки:
  • Общая стоимость владения растёт при горизонтальном масштабировании
  • Архитектура ограничена 8-ми процессорными серверами
  • Тяжело поддерживать целостность кэша при увеличении сокетов
  • Нелинейный рост производительности
  • Соотношение цены к производительности падает
  • Неоптимальная эффективность при использовании больших ВМ
  • Вплоть до 65% пропускной способности шины уходит на широковещательные сообщения болтливого протокола QPI
В чём же причина болтливости протокола QPI? Для того чтобы достичь целостности процессорного кэша каждая операция на чтение должна быть реплицирована на все процессоры. Это можно сравнить с широковещательным пакетом в IP сети. Каждый процессор должен проверить у себя затребованную строку памяти, и в случае использования последней версии данных предоставить её. В случае если актуальные данные находятся в другом кэше протокол QPI с минимальными задержками копирует данную строку памяти из удалённого кэша. Таким образом на репликацию каждой операции чтения тратиться пропускная способность шины и такты кэша, которые могли бы использоваться для передачи полезных данных.

Основные приложения, производительность которых страдает от недостатков протокола QPI это Java приложения, большие БД, чувствительные к задержкам приложения.

Результатом вертикального масштабирования должно быть отсутствие бутылочного горлышка, иначе данная архитектура становится бессмысленной. Таким образом, линейность увеличения производительности должна соответствовать линейности добавления ресурсов.

Glued архитектура
Для решения описанных выше проблем разработчики аппаратного обеспечения разработали glued архитектуру. Данная архитектура использует внешний контроллер нод для организации взаимосвязи островков QPI - кластеров процессоров.


Intel QPI предлагает специальное масштабируемое решение - eXternal Node-Controllers (или XNC), практическая реализация которого разрабатывается сторонними OEM компаниями. Внешний контроллер нод, используемый начиная с Intel Xeon E7-4800, со встроенным контроллером памяти, включает в себя также систему Cache Coherent Non-Uniform Memory Access (ccNUMA) задача которой отслеживать актуальность данных в каждой строке памяти процессорного кэша были актуальные данные.

Задержки между процессором и памятью в ccNUMA зависят от местоположения этих двух компонентов в отношении друг друга, в результате XNC контроллеры становятся критически важным компонентом сервера, и очень небольшое количество производителей серверов могут разработать сервера с возможностью вертикального масштабирования.

Масштабируемость - способность устройства увеличивать свои
возможности
путем наращивания числа функциональных блоков,
выполняющих одни и
те же задачи.
Глоссарий.ru

Обычно о масштабировании начинают думать тогда, когда один
сервер не справляется с возложенной на него работой. С чем именно он не
справляется? Работа любого web-сервера по большому счету сводится к основному
занятию компьютеров - обработке данных. Ответ на HTTP (или любой другой) запрос
подразумевает проведение некоторых операций над некими данными. Соответственно,
у нас есть две основные сущности - это данные (характеризуемые своим объемом) и
вычисления (характеризуемые сложностью). Сервер может не справляться со своей
работой по причине большого объема данных (они могут физически не помещаться на
сервере), либо по причине большой вычислительной нагрузки. Речь здесь идет,
конечно, о суммарной нагрузке - сложность обработки одного запроса может быть
невелика, но большое их количество может «завалить» сервер.

В основном мы будем говорить о масштабировании на примере
типичного растущего web-проекта, однако описанные здесь принципы подходят и для
других областей применения. Сначала мы рассмотрим архитектуру проекта и простое
распределение ее составных частей на несколько серверов, а затем поговорим о
масштабировании вычислений и данных.

Типичная архитектура сайта

Жизнь типичного сайта начинается с очень простой архитектуры
- это один web-сервер (обычно в его роли выступает Apache),
который занимается всей работой по обслуживанию HTTP-запросов,
поступающих от посетителей. Он отдает клиентам так называемую «статику», то
есть файлы, лежащие на диске сервера и не требующие обработки: картинки (gif,
jpg, png), листы стилей (css), клиентские скрипты (js, swf). Тот же сервер
отвечает на запросы, требующие вычислений - обычно это формирование
html-страниц, хотя иногда «на лету» создаются и изображения и другие документы.
Чаще всего ответы на такие запросы формируются скриптами, написанными на php,
perl или других языках.

Минус такой простой схемы работы в том, что разные по
характеру запросы (отдача файлов с диска и вычислительная работа скриптов)
обрабатываются одним и тем же web-сервером. Вычислительные запросы требуют
держать в памяти сервера много информации (интерпретатор скриптового языка,
сами скрипты, данные, с которыми они работают) и могут занимать много
вычислительных ресурсов. Выдача статики, наоборот, требует мало ресурсов
процессора, но может занимать продолжительное время, если у клиента низкая
скорость связи. Внутреннее устройство сервера Apache предполагает, что каждое
соединение обрабатывается отдельным процессом. Это удобно для работы скриптов,
однако неоптимально для обработки простых запросов. Получается, что тяжелые (от
скриптов и прочих данных) процессы Apache много времени проводят в ожидании (сначала при получении
запроса, затем при отправке ответа), впустую занимая память сервера.

Решение этой проблемы - распределение работы по обработке
запросов между двумя разными программами - т.е. разделение на frontend и
backend. Легкий frontend-сервер выполняет задачи по отдаче статики, а остальные
запросы перенаправляет (проксирует) на backend, где выполняется формирование
страниц. Ожидание медленных клиентов также берет на себя frontend, и если он использует
мультиплексирование (когда один процесс обслуживает нескольких клиентов - так
работают, например, nginx или lighttpd), то ожидание практически ничего не
стоит.

Из других компонент сайта следует отметить базу данных, в
которой обычно хранятся основные данные системы - тут наиболее популярны
бесплатные СУБД MySQL и PostgreSQL. Часто отдельно выделяется хранилище
бинарных файлов, где содержатся картинки (например, иллюстрации к статьям
сайта, аватары и фотографии пользователей) или другие файлы.

Таким образом, мы получили схему архитектуры, состоящую из
нескольких компонент.

Обычно в начале жизни сайта все компоненты архитектуры
располагаются на одном сервере. Если он перестает справляться с нагрузкой, то
есть простое решение - вынести наиболее легко отделяемые части на другой
сервер. Проще всего начать с базы данных - перенести ее на отдельный сервер и
изменить реквизиты доступа в скриптах. Кстати, в этот момент мы сталкиваемся с
важностью правильной архитектуры программного кода. Если работа с базой данных
вынесена в отдельный модуль, общий для всего сайта - то исправить параметры
соединения будет просто.

Пути дальнейшего разделения компонент тоже понятны - например, можно вынести frontend на отдельный сервер. Но обычно frontend
требует мало системных ресурсов и на этом этапе его вынос не даст существенного
прироста производительности. Чаще всего сайт упирается в производительность
скриптов - формирование ответа (html-страницы) занимает слишком долгое время.
Поэтому следующим шагом обычно является масштабирование backend-сервера.

Распределение вычислений

Типичная ситуация для растущего сайта - база данных уже
вынесена на отдельную машину, разделение на frontend и backend выполнено,
однако посещаемость продолжает увеличиваться и backend не успевает обрабатывать
запросы. Это значит, что нам необходимо распределить вычисления на несколько
серверов. Сделать это просто - достаточно купить второй сервер и поставить на
него программы и скрипты, необходимые для работы backend.
После этого надо сделать так, чтобы запросы пользователей распределялись
(балансировались) между полученными серверами. О разных способах балансировки
будет сказано ниже, пока же отметим, что обычно этим занимается frontend,
который настраивают так, чтобы он равномерно распределял запросы между
серверами.

Важно, чтобы все backend-серверы были способны правильно
отвечать на запросы. Обычно для этого необходимо, чтобы каждый из них работал с
одним и тем же актуальным набором данных. Если мы храним всю информацию в единой
базе данных, то СУБД сама обеспечит совместный доступ и согласованность данных.
Если же некоторые данные хранятся локально на сервере (например, php-сессии
клиента), то стоит подумать о переносе их в общее хранилище, либо о более
сложном алгоритме распределения запросов.

Распределить по нескольким серверам можно не только работу
скриптов, но и вычисления, производимые базой данных. Если СУБД выполняет много
сложных запросов, занимая процессорное время сервера, можно создать несколько
копий базы данных на разных серверах. При этом возникает вопрос синхронизации
данных при изменениях, и здесь применимы несколько подходов.

  • Синхронизация на уровне приложения . В этом случае наши
    скрипты самостоятельно записывают изменения на все копии базы данных (и сами несут
    ответственность за правильность данных). Это не лучший вариант, поскольку он
    требует осторожности при реализации и весьма неустойчив к ошибкам.
  • Репликация - то есть автоматическое тиражирование
    изменений, сделанных на одном сервере, на все остальные сервера. Обычно при
    использовании репликации изменения записываются всегда на один и тот же сервер - его называют master, а остальные копии - slave. В большинстве СУБД есть
    встроенные или внешние средства для организации репликации. Различают
    синхронную репликацию - в этом случае запрос на изменение данных будет ожидать,
    пока данные будут скопированы на все сервера, и лишь потом завершится успешно - и асинхронную - в этом случае изменения копируются на slave-сервера с
    задержкой, зато запрос на запись завершается быстрее.
  • Multi-master репликация. Этот подход аналогичен
    предыдущему, однако тут мы можем производить изменение данных, обращаясь не к
    одному определенному серверу, а к любой копии базы. При этом изменения
    синхронно или асинхронно попадут на другие копии. Иногда такую схему называют
    термином «кластер базы данных».

Возможны разные варианты распределения системы по серверам.
Например, у нас может быть один сервер базы данных и несколько backend (весьма
типичная схема), или наоборот - один backend и несколько БД. А если мы масштабируем
и backend-сервера, и базу данных, то можно объединить backend и копию базы на
одной машине. В любом случае, как только у нас появляется несколько экземпляров
какого-либо сервера, возникает вопрос, как правильно распределить между ними
нагрузку.

Методы балансировки

Пусть мы создали несколько серверов (любого назначения - http, база данных и т.п.), каждый из которых может обрабатывать запросы. Перед
нами встает задача - как распределить между ними работу, как узнать, на какой
сервер отправлять запрос? Возможны два основных способа распределения запросов.

  • Балансирующий узел . В этом случае клиент шлет запрос на один
    фиксированный, известный ему сервер, а тот уже перенаправляет запрос на один из
    рабочих серверов. Типичный пример - сайт с одним frontend и несколькими
    backend-серверами, на которые проксируются запросы. Однако «клиент» может
    находиться и внутри нашей системы - например, скрипт может слать запрос к
    прокси-серверу базы данных, который передаст запрос одному из серверов СУБД.
    Сам балансирующий узел может работать как на отдельном сервере, так и на одном
    из рабочих серверов.

    Преимущества этого подхода в том,
    что клиенту ничего не надо знать о внутреннем устройстве системы - о количестве
    серверов, об их адресах и особенностях - всю эту информацию знает только
    балансировщик. Однако недостаток в том, что балансирующий узел является единой
    точкой отказа системы - если он выйдет из строя, вся система окажется
    неработоспособна. Кроме того, при большой нагрузке балансировщик может просто перестать
    справляться со своей работой, поэтому такой подход применим не всегда.

  • Балансировка на стороне клиента . Если мы хотим избежать
    единой точки отказа, существует альтернативный вариант - поручить выбор сервера
    самому клиенту. В этом случае клиент должен знать о внутреннем устройстве нашей
    системы, чтобы уметь правильно выбирать, к какому серверу обращаться.
    Несомненным плюсом является отсутствие точки отказа - при отказе одного из
    серверов клиент сможет обратиться к другим. Однако платой за это является
    усложнение логики клиента и меньшая гибкость балансировки.


Разумеется, существуют и комбинации этих подходов. Например,
такой известный способ распределения нагрузки, как DNS-балансировка, основан на
том, что при определении IP-адреса сайта клиенту выдается
адрес одного из нескольких одинаковых серверов. Таким образом, DNS выступает в
роли балансирующего узла, от которого клиент получает «распределение». Однако
сама структура DNS-серверов предполагает отсутствие точки отказа за счет
дублирования - то есть сочетаются достоинства двух подходов. Конечно, у такого
способа балансировки есть и минусы - например, такую систему сложно динамически
перестраивать.

Работа с сайтом обычно не ограничивается одним запросом.
Поэтому при проектировании важно понять, могут ли последовательные запросы
клиента быть корректно обработаны разными серверами, или клиент должен быть
привязан к одному серверу на время работы с сайтом. Это особенно важно, если на
сайте сохраняется временная информация о сессии работы пользователя (в этом
случае тоже возможно свободное распределение - однако тогда необходимо хранить
сессии в общем для всех серверов хранилище). «Привязать» посетителя к
конкретному серверу можно по его IP-адресу (который, однако, может меняться),
или по cookie (в которую заранее записан идентификатор сервера), или даже
просто перенаправив его на нужный домен.

С другой стороны, вычислительные сервера могут быть и не равноправными.
В некоторых случаях выгодно поступить наоборот, выделить отдельный сервер для
обработки запросов какого-то одного типа - и получить вертикальное разделение
функций. Тогда клиент или балансирующий узел будут выбирать сервер в
зависимости от типа поступившего запроса. Такой подход позволяет отделить
важные (или наоборот, не критичные, но тяжелые) запросы от остальных.

Распределение данных

Мы научились распределять вычисления, поэтому большая
посещаемость для нас не проблема. Однако объемы данных продолжают расти,
хранить и обрабатывать их становится все сложнее - а значит, пора строить
распределенное хранилище данных. В этом случае у нас уже не будет одного или
нескольких серверов, содержащих полную копию базы данных. Вместо этого, данные
будут распределены по разным серверам. Какие возможны схемы распределения?

  • Вертикальное распределение (vertical partitioning) - в простейшем случае
    представляет собой вынесение отдельных таблиц базы данных на другой сервер. При
    этом нам потребуется изменить скрипты, чтобы обращаться к разным серверам за
    разными данными. В пределе мы можем хранить каждую таблицу на отдельном сервере
    (хотя на практике это вряд ли будет выгодно). Очевидно, что при таком
    распределении мы теряем возможность делать SQL-запросы, объединяющие данные из
    двух таблиц, находящихся на разных серверах. При необходимости можно реализовать
    логику объединения в приложении, но это будет не столь эффективно, как в СУБД.
    Поэтому при разбиении базы данных нужно проанализировать связи между таблицами,
    чтобы разносить максимально независимые таблицы.

    Более сложный случай
    вертикального распределения базы - это декомпозиция одной таблицы, когда часть
    ее столбцов оказывается на одном сервере, а часть - на другом. Такой прием
    встречается реже, но он может использоваться, например, для отделения маленьких
    и часто обновляемых данных от большого объема редко используемых.

  • Горизонтальное распределение (horizontal partitioning) - заключается в
    распределении данных одной таблицы по нескольким серверам. Фактически, на
    каждом сервере создается таблица такой же структуры, и в ней хранится
    определенная порция данных. Распределять данные по серверам можно по разным
    критериям: по диапазону (записи с id < 100000 идут на сервер А, остальные - на сервер Б), по списку значений (записи типа «ЗАО» и «ОАО» сохраняем на сервер
    А, остальные - на сервер Б) или по значению хэш-функции от некоторого поля
    записи. Горизонтальное разбиение данных позволяет хранить неограниченное
    количество записей, однако усложняет выборку. Наиболее эффективно можно выбирать
    записи только когда известно, на каком сервере они хранятся.

Для выбора правильной схемы распределения данных необходимо
внимательно проанализировать структуру базы. Существующие таблицы (и, возможно,
отдельные поля) можно классифицировать по частоте доступа к записям, по частоте
обновления и по взаимосвязям (необходимости делать выборки из нескольких
таблиц).

Как упоминалось выше, кроме базы данных сайту часто требуется
хранилище для бинарных файлов. Распределенные системы хранения файлов
(фактически, файловые системы) можно разделить на два класса.

  • Работающие на уровне операционной системы . При этом для
    приложения работа с файлами в такой системе не отличается от обычной работы с
    файлами. Обмен информацией между серверами берет на себя операционная система.
    В качестве примеров таких файловых систем можно привести давно известное
    семейство NFS или менее известную, но более современную систему Lustre.
  • Реализованные на уровне приложения распределенные
    хранилища подразумевают, что работу по обмену информацией производит само
    приложение. Обычно функции работы с хранилищем для удобства вынесены в
    отдельную библиотеку. Один из ярких примеров такого хранилища - MogileFS, разработанная
    создателями LiveJournal. Другой распространенный пример - использование
    протокола WebDAV и поддерживающего его хранилища.

Надо отметить, что распределение данных решает не только
вопрос хранения, но и частично вопрос распределения нагрузки - на каждом
сервере становится меньше записей, и потому обрабатываются они быстрее.
Сочетание методов распределения вычислений и данных позволяет построить
потенциально неограниченно-масштабируемую архитектуру, способную работать с
любым количеством данных и любыми нагрузками.

Выводы

Подводя итог сказанному, сформулируем выводы в виде кратких тезисов.

  • Две основные (и связанные между собой) задачи масштабирования - это распределение вычислений и распределение данных
  • Типичная архитектура сайта подразумевает разделение ролей и
    включает frontend, backend, базу данных и иногда хранилище файлов
  • При небольших объемах данных и больших нагрузках применяют
    зеркалирование базы данных - синхронную или асинхронную репликацию
  • При больших объемах данных необходимо распределить базу данных - разделить
    ее вертикально или горизонтально
  • Бинарные файлы хранятся в распределенных файловых системах
    (реализованных на уровне ОС или в приложении)
  • Балансировка (распределение запросов) может быть равномерная или
    с разделением по функционалу; с балансирующим узлом, либо на стороне клиента
  • Правильное сочетание методов позволит держать любые нагрузки;)

Ссылки

Продолжить изучение этой темы можно на интересных англоязычных сайтах и блогах.

Возможность масштабирования информационной системы – как горизонтальное, так и вертикальное – является одним из самых важных факторов, на которые стоит обращать при выборе средства автоматизации деятельности любой организации. Если выбранное решение невозможно будет масштабировать, или каждая стадия роста бизнеса будет приводить к сложностям с сопровождением и развитием такого программного продукта, то не следует даже начинать его использовать. Мы разрабатывали СЭД ЛЕТОГРАФ с учетом высоких требований к масштабированию.

Необходимость в горизонтальном или вертикальном масштабировании возникает в связи с созданием корпоративных высоконагруженных ИТ-систем, в которых работают тысячи или даже десятки тысяч пользователей. Однако поддерживать одновременную работу большого числа пользователей могут далеко не все СЭД. Только если в СЭД на уровне архитектуры заложены возможности по наращиванию количества пользователей без потери производительности – только в этом случае масштабирование будет успешным. Созданная нами система ЛЕТОГРАФ была разработана таким образом, чтобы идеально масштабироваться как горизонтально, так и вертикально. Это достигается как за счет архитектуры самой системы и того прикладного кода, который мы разработали, так и за счет функционала СУБД InterSystems Caché, на которой наша СЭД построена.

СУБД Caché – это современная система управления базами данных и среда для быстрой разработки приложений. В основе этой СУБД лежит технология, которая обеспечивает быстродействие и высокую производительность, масштабируемость и надежность. При этом аппаратные требования системы остаются довольно скромными.

СУБД Caché сохраняет высокую производительность даже при работе с огромными массивами данных и большим числом серверов в распределенных системах. При этом доступ к данным осуществляется через объекты, высокопроизводительные SQL-запросы и путем прямой обработки многомерных структур данных.

Вертикальное масштабирование

Вертикальное масштабирование предполагает наращивание мощности сервера и его возможностей, связанных с дисковой подсистемой. ЛЕТОГРАФ поддерживает современную процессорную архитектуру, что позволяет обрабатывать большие объемы данных в несколько потоков. При этом сами данные в СЭД организованы таким образом, чтобы их можно было легко разносить по СХД на разные диски. Такой подход позволяет равномерно распределить нагрузку на хранилища данных и минимизировать ее при чтении данных непосредственно из базы, а значит и падения производительности системы удастся избежать даже при одновременной работе большого количества пользователей.

Еще на этапе разработки платформы мы понимали, что вертикальное масштабирование – одна из ключевых возможностей системы, потребность в которой со временем будет только увеличиваться. Мы разработали систему таким образом, чтобы процессы работы каждого пользователя были выделены в отдельные системные процессы, которые между собой не пересекаются благодаря тому, что базы данных эффективно делят доступ к информации. При этом количество блокировок данных в СЭД ЛЕТОГРАФ минимизировано и нет «узкого горла» ни при чтении данных, ни при их записи.

Архитектура СЭД ЛЕТОГРАФ позволяет распределять данные на несколько физических или виртуальных серверов. Благодаря такому распределению каждый из пользователей работает в изолированном процессе, а требуемые данные эффективно кэшируются с использованием технологий СУБД Caché. Время блокировки данных минимизировано: все транзакции выстроены таким образом, чтобы переводить данные в эксклюзивный режим доступа лишь на очень короткое время. При этом даже такие высоконагруженные с точки зрения количества обращений к диску данные, как журналы, индексы, данные объектов, потоки, логи действий пользователей, распределены таким образом, что средняя нагрузка на подсистему остается равномерной и не приводит к задержкам. Такой подход позволяет эффективно вертикально масштабировать систему, распределяя нагрузку между серверами или виртуальными дисками.

Горизонтальное масштабирование

Горизонтальное масштабирование – это распределение сессий пользователей по разным серверам (равномерная загрузка серверов приложений и возможность подключать дополнительные сервера приложений), а также распределение данных по разным серверам БД, что обеспечивает высокую производительность системы, при этом не приводя к снижению отказоустойчивости. Для горизонтального масштабирования в системе ЛЕТОГРАФ предусмотрен целый ряд возможностей.

Прежде всего, это масштабирование нагрузки благодаря Enterprise Cache Protocol (ECP, протокол распределенного кэша), протоколу, используемому в СУБД InterSystems Caché. Преимущество ECP заключается в инновационном подходе к кэшированию данных. В рамках данного протокола пользовательские процессы, которые работают на серверах приложений (или ECP-клиентах) СУБД и обслуживают запросы, получают доступ к локальному кэшу недавно использованных данных. И только если этих данных недостаточно, ECP-клиент обращается к базе данных. С помощью протокола ECP выполняется автоматическое управление кэшем: наиболее часто используемые данные сохраняются в кэше, часто обновляемые данные периодически реплицируются, обеспечивая постоянное целостность и корректность данных на всех ECP-клиентах. При этом внутренний алгоритм InterSystems Caché предполагает, что базы данных синхронизируются между ECP-клиентом и ECP-сервером.

Фактически использование технологий СУБД Caché позволяет легко и быстро масштабировать нагрузку по серверам приложений, обеспечив таким образом подключение большого числа пользователей к одному серверу базы данных благодаря использованию ECP-протокола.

Так как информация, которую затребовал тот или иной пользователь, может быть задействована на нескольких ECP-клиентах, необходимо блокировать данные на короткий период времени, быстро выполнять транзакции, не выполняя внутренних вычислений. И мы успешно это реализовали. Данная технология позволяет нам эффективно масштабировать систему в ситуации, когда используются один сервер базы данных и несколько серверов, на которых работают пользовательские процессы. Технологическая особенность СУБД Caché заключается в том, что она поддерживает корректность транзакций в рамках одного ECP-сервера вне зависимости от количества ECP-клиентов, которые к ней подключены. В случае, когда у нас один ECP-сервер и множество ECP-клиентов, эта задача великолепно решается, потому что все транзакции идут на одном сервере базы данных.

Опыт показывает, что даже в высоконагруженных системах всегда удается четко разделить данные между серверами БД на основании определенных признаков. Например, если несколько организаций объединены в холдинг, то пользователями из одной структурной единицы вряд ли когда-нибудь будут востребованы данные, которые касаются другого подразделения. Это позволяет на уровне алгоритмов разделять и хранить такие данные на разных серверах БД, повышая таким образом возможности горизонтального масштабирования.

В СЭД ЛЕТОГРАФ реализован механизм шардинга, благодаря которому мы на уровне настроек системы (без применения программирования), даем возможность описать правила и принципы разнесения самих данных по разным серверам БД. Несмотря на то, что с точки зрения структуры баз данных информация, хранящаяся на каждом сервере одинакова, сама информация отличается принципиально в зависимости от организации или каких-либо других признаков, которые являются значимыми для конкретной задачи. Используя технологию шардинга можно добиться, что в 95-99 % случаев пользователи будут работать только со своей «порцией данных», и не потребуется в рамках сессии обращаться к разным серверам БД.

На возможности масштабирования СЭД ЛЕТОГРАФ влияет и то, данные могут по разному обрабатываться. Например, в документы (даже созданные несколько лет назад) могут вноситься изменения, а в журнал действий пользователей записи только добавляются (ни одна запись не может быть ни удалена, ни изменена). Механизмы, которые используются в СЭД ЛЕТОГРАФ, позволяют дополнительно повысить производительность системы и улучшить масштабирование за счет ведения таких журналов на отдельных серверах БД – причем, как в случае односерверной, так и многосерверной конфигурации. Такой подход ориентирован на снижение нагрузки на основные сервера БД.

Аналогичная ситуация возникает и контентом (“информационным содержанием” СЭД). Так как система ЛЕТОГРАФ работает с большим объемом контента – это терабайты данных, миллионы файлов и документов – разумно предположить, что контент, который попадает в систему, ни при каких условиях не должен пострадать. Поэтому мы также выносим хранение файлов на отдельные сервера баз данных и обеспечиваем таким образом дополнительно горизонтальное масштабирование.

Программное обеспечение фронт-энда

В качестве фронт-энда в СЭД ЛЕТОГРАФ используются Apache и HAProxy. HAProxy отвечает за балансировку нагрузки между веб-серверами Apache. HAProxy, как показал опыт работы системы, зарекомендовал себя как наиболее эффективное решение, способное обеспечить поддержку работы большого числа пользователей и необходимый контроль за отказоустойчивостью.

Когда пользователь открывает браузер и подключается к системе, HAProxy «распределяет» его на один из серверов приложений. Дальше все запросы, которые поступают от этого пользователя, будут отправляться на тот же сервер приложений в тот же процесс.

Мы пробовали разные системы, и тестирование показало, что HAProxy – наиболее эффективный балансировщик нагрузки, обеспечивающий равномерное распределение пользователей по свободным слотам серверов приложений. В HAProxy есть все необходимые механизмы, чтобы отслеживать состояние каждого сервера приложений и не распределять новый трафик на вышедший из строя по каким-либо причинам сервер приложений. Кроме того, HAProxy дополнительно предоставляет целый ряд возможностей с точки зрения кэширования статических (неизменяемых в процессе работы пользователя) данных – например, стилей, иконок и так далее – того, что позволяет организовать интерфейс.

Пример реализации проекта

Архитектура ЛЕТОГРАФ позволяет добиться существенных результатов в сокращении времени отклика и повышении производительности системы. В рамках одного из наших проектов в СЭД хранится 23,5 Тбайт данных. Из них 14,7 Тбайт (63%) приходится на потоки (“прикрепленные к карточкам файлы”), 3,5 Тбайт (15%) – на отчетные формы, такие как таблицы отчетов, которые формируются в асинхронном режиме, могут запускаться как по расписанию, так и по требованию пользователя и представляют собой сводную таблицу, любые данные в которой можно детализировать до объекта. Еще 1,6 Тбайт (7%) – это протокол пользовательских операций, а все остальное (16%) – данные карточек и индексы.

В данной системе работает более 11 тыс. пользователей, 2 тыс. из них работают одновременно, а в дни пиковой нагрузки число одновременно работающих в СЭД сотрудников превышает 3 тыс. Количество записей в журнале уже превысило 5,5 млрд, а учетных карточек – почти достигло полумиллиарда.

В качестве сервера базы данных в данном проекте установлен отказоустойчивый кластер из двух физических серверов с тремя инсталляциями СУБД, а также резервный сервер. Десять серверов приложений (и один резервный) обрабатывают пользовательские сессии и обеспечивают формирование асинхронных отчетов. 2 сервера HAProxy выполняют функции балансировщиков. В случае проблем с одним из серверов, выполняется автоматическая передача его IP-адреса на другой сервер. Также предусмотрены сервер индексации файлов и сервер распознавания (обеспечивающий распознавание текста отсканированных бумажных документов при размещении электронных образов в систему).

Резюме

В СЭД ЛЕТОГРАФ предусмотрено большое количество разнообразных механизмов масштабирования. Мы предлагаем своеобразный пирог, в основе которого лежит сервер (физический или виртуальный), на который устанавливается операционная система. Поверх нее стоит СУБД InterSystems Caché, внутри которой располагается код платформы. А уже над ним – настройки системы ЛЕТОГРАФ, благодаря которым СЭД полностью конфигурируется. И такой пирог размещен на каждом сервере. Сервера между собой связаны определенным образом за счет выбранных конфигураций. И последний слой – это HAProxy, распределяющий между серверами запросы пользователей. Такая архитектура позволяет нам поддерживать масштабирование и обеспечивать все необходимые механизмы мониторинга. В результате конечные пользователи получают быстро работающую СЭД, а ИТ-специалисты – простую в управлении и обслуживании, унифицированную систему, без огромного числа составляющих, которые в случае высоконагруженных приложений приходится постоянно контролировать и администрировать. Кроме того, в зависимости от изменения потребностей организации СЭД ЛЕТОГРАФ легко переконфигурировать, добавив новые серверы или дисковые возможности.


Данный материал является частной записью члена сообщества Club.CNews.
Редакция CNews не несет ответственности за его содержание.