Eeprom стирание. Что такое чип памяти и как программировать микросхемы. Примеры проектов и скетчей

В прошлый раз, когда я писал свой "развёрнутый ответ на вопрос" о том, как забэкапить прошивку с "Меги" меня упрекнули, что я не упомянул про бэкап EEPROM. В тот раз я не сделал этого сознательно, т.к. справедливо рассудил, что не стоит всё усложнять на этапе первоначального "подхода к снаряду". Дело в том, что не для всех очевиден тот факт, что EEPROM не прошивается при компиляции и заливки прошивки из Arduino IDE. То есть, это означает, что абсолютно ничего в EEPROM не заливается, когда прошивка заливается из IDE. А манипуляции с EEPROM (если его использование вообще включено в прошивке) производятся абсолютно на другом уровне. И следовательно, для бэкапа голой прошивки без тонких настроек, которые ВОЗМОЖНО (только возможно) могут храниться в EEPROM, вполне было достаточно сохранить только голую прошивку. Но раз уж возник вопрос, то почему бы его не "разжевать". Давайте пройдёмся по порядку.Что такое EEPROM и зачем вести о нём речь?
EEPROM - (Electrically Erasable Programmable Read-Only Memory) область энергонезависимой памяти микроконтроллера, в которую можно записать и прочитать информацию. Зачастую его используют для того, чтобы хранить настройки программы, которые могут меняться в процессе эксплуатации, и которые необходимо хранить при отключенном питании.

Как 3D принтер использует EEPROM?
Рассмотрим на примере Marlin"а. В Marlin Firmware "из коробки" EEPROM не используется. Параметры конфигуратора (Configuration.h), которые включают возможность его использования, по умолчанию, закомментированы.

#define EEPROM_SETTINGS
#define EEPROM_CHITCHAT

Если включено использование EEPROM, то принтер может хранить и использовать следующие настройки (подсмотрено у буржуев):

  • Количество шагов на миллиметр
  • Максимальная/минимальная скорость подачи [мм/с]
  • Максимальное ускорение [мм/с^2]
  • Ускорение
  • Ускорение при ретракте
  • Настройки PID
  • Отступ домашней позиции
  • Минимальная скорость подачи во время перемещения [мм/с]
  • Минимальное время участка [мс]
  • Максимальный скачок скорости по осям X-Y [мм/с]
  • Максимальный скачок скорости по оси Z [мм/с]
Редактировать эти настройки можно, используя экран принтера и органы управления. При включенном использовании EEPROM, в меню должны отображаться пункты:
  • Store memory
  • Load memory
  • Restore Failsafe
Так же, можно использовать GCode для работы напрямую (через Pronterface).
  • M500 Сохраняет текущие настройки в EEPROM до следующего запуска или выполнения команды M501.
  • M501 Читает настройки из EEPROM.
  • M502 Сбрасывает настройки на значения по-умолчанию, прописанные в Configurations.h. Если выполнить после неё M500, в EEPROM будут занесены значения по-умолчанию.
  • M503 Выводит текущие настройки – ""Те, что записаны в EEPROM.""
О EEPROM в Repitier firmware можно почитать .

Как считать и записать данные в EEPROM?
Аналогично, описанному в , методу бэкапа прошивки, используя ключ -U . Только в данном случае после него будет указатель на то, что считывать нужно EEPROM.

avrdude.exe -p atmega2560 -c wiring -PCOM5 -b115200 -Ueeprom:r:"printer_eeprom".eep:i

Этой командой производится чтение данных EEPROM"а в файл "printer_eeprom.eep". В случае успеха, на экране вы увидите примерно следующее.

Запись тоже не представляет из себя ничего сложного и выполняется аналогичной командой, которая отличается только тем, что в ключе -U стоит не "r", а "w".

avrdude.exe -p atmega2560 -c wiring -PCOM5 -b115200 -Ueeprom:w:"printer_eeprom".eep:i

В случае успеха, на экране вы увидите примерно следующее сообщение.

Как и зачем стирать EEPROM?
Для начала,- "зачем это делать?". Стирать EEPROM нужно в том случае, если предыдущая прошивка тоже его использовала, и в памяти мог остаться мусор. Где-то я уже натыкался на людей с проблемами, что после перехода с одной прошивки на другую (с Marlin на Repitier ЕМНИП), у них принтер начинал вести себя, скажем так, "творчески". Это связанно с тем, что разные прошивки хранят свои данные под разными адресами. И при попытке читать данные из неверного адреса начинается свистопляска.
Затереть EEPROM можно только программно из прошивки, но для этого придётся - на время залить в контроллер специальный скетч. Подробно об этом можно прочитать в официальной документации по Arduino .
Если же стирается EEPROM не в Arduino плате, а в каком-то абстрактном контроллере, то код скетча нужно будет изменить с учётом размера EEPROM в конкретном контроллере на плате. Для этого нужно будет поменять условие окончания в цикле "For". Например, для ATmega328, у которой 1kb памяти EEPROM, цикл будет выглядеть так:
Вывод.
Я довольно долго распинался, а всё для чего? Для того, чтобы подвести к заключению о том, что при бэкапе прошивки, EEPROM тоже можно сохранить, но только в том случае если вам нужны сохранённые в нём настройки. Если же вы готовы ими пожертвовать, то забейте на это. Так же, если вы меняете одну прошивку на другую, или переходите с версии не версию, не поленитесь очистить EEPROM перед заливкой новой прошивки. Ну и заодно мы узнали много нового.

Наш контроллер печи почти готов – однако пока он остаётся контроллером-«золотой рыбкой», который помнит все настройки только пять минут до первого выключения питания. Чтобы запомнить наши настройки, значение заданной температуры и точки калибровки даже после отключения питания, нужно использовать энергонезависимую память – EEPROM.
Очень хорошо о работе с EEPROM написано у наших товарищей и .

Главное, что нам нужно знать – что память EEPROM лучше рассматривать не как «просто память», а как отдельное внутреннее устройство в микросхеме.
У EEPROM отдельное адресное пространство , не имеющее никакого отношения к адресному пространству процессора (FLASH и SRAM); для того, чтобы получить доступ к данным по определённому адресу в энергонезависимой памяти, нужно выполнить определённую последовательность действий с использованием целого ряда регистров (регистров адреса EEARH и EEARL, регистра данных EEDR и регистра управления EECR).
Согласно даташиту, для записи байта по определённому адресу в EEPROM нужно выполнить следующее:

  1. ждём готовности EEPROM к записи данных (сброса бита EEPE регистра EECR);
  2. ждём окончания записи в FLASH-память (сброса бита SELFPRGEN регистра SPMCSR) – нужно выполнить, если в программе присутствует загрузчик;
  3. записываем новый адрес в регистр EEAR (при необходимости);
  4. записываем байт данных в регистр EEDR (при необходимости);
  5. устанавливаем в единицу бит EEMPE регистра EECR;
  6. в течение четырёх тактов после установки флага EEMPE записываем в бит EEPE регистра EECR логическую единицу.

После этого процессор пропускает 2 такта перед выполнением следующей инструкции.
Второй пункт нужно выполнять при наличии загрузчика в программе – дело в том, что запись в EEPROM не может выполняться одновременно с записью во FLASH-память, поэтому перед записью в EEPROM нужно убедиться, что программирование FLASH-памяти завершено; если же микроконтроллер не имеет загрузчика, то он никогда не изменяет содержимое FLASH-памяти (помним, что avr имеет гарвардскую архитектуру: память программ (FLASH) и память данных (SRAM) разделены).
Длительность цикла записи зависит от частоты внутреннего RC-генератора микросхемы, напряжения питания и температуры; обычно для моделей ATmega48x/88x/168x это составляет 3.4 мс (!), для некоторых старых моделей – 8.5 мс (!!!).
Кроме того, при записи в EEPROM могут возникнуть проблемы с вызовом прерываний в процессе выполнения последовательности действий выше – так что прерывания в процессе записи в EEPROM лучше запретить.
Чтение энергонезависимой памяти происходит чуть проще:

  1. ждём готовности EEPROM к чтению данных (сброса бита EEWE регистра EECR);
  2. записываем адрес в регистр EEAR;
  3. устанавливаем в единицу бит EERE регистра EECR;
  4. считываем данные из регистра EEDR (на самом деле, когда запрошенные данные будут перемещены в регистр данных, происходит аппаратный сброс бита EERE; но отслеживать состояние этого бита не требуется, так как операция чтения из EEPROM всегда выполняется за один такт).

После установки бита в EERE в единицу процессор пропускает 4 такта перед началом выполнения следующей инструкции.
Как мы видим, работа с энергонезависимой памятью – процесс времязатратный; если мы часто будем записывать-считывать данные с EEPROM – программа может начать тормозить.

Однако мы пишем программу в среде IAR, и нам повезло: всю работу с чтением-записью из EEPROM будет выполнять среда разработки – в iar есть модификатор «__eeprom», который создает переменные в энергонезависимой памяти – а далее нам нужно будет просто или считывать из «постоянных» переменных в «текущие» (при инициализации контроллера), или записывать из «текущих» переменных в «постоянные» – то есть, при изменении текущего значения нужно изменять и значение переменной в энергонезависимой памяти.
Выглядеть новые переменные будут вот так:

Eeprom uint16_t EEP_MinTemperature;

Ещё пару общих слов: и хотя указатели на eeprom-переменные у нас не предполагаются, нужно помнить, что eeprom – отдельное адресное пространство, и чтобы создать указатель на eeprom (и это позволяет нам сделать компилятор), необходимо указывать, что это указатель на адрес в eeprom:

Uint16_t __eeprom *EEP_MinTemperatureAdr;

Возвращаемся к контроллеру печки и EEPROM. В нашем случае, для EEPROM никакой виртуальной машины, конечно, не предполагается; более того, стоит подумать, нужна ли отдельная библиотека для работы с энергонезависимой памятью – уж больно «разбросаны» по программе записи важных настроек; если пытаться сделать отдельную библиотеку, то придётся делать перекрестные ссылки: в библиотеке для EEPROM подключать библиотеки АЦП, нагревательного элемента, глобальных настроек; а в этих библиотеках периферии подключать библиотеку EEPROM – такой подход не очень хорош.
Другой вариант – дописать в каждую библиотеку, где нужно сохранять настройки, eeprom-переменную, и сохранять соответствующие настройки прямо в виртуальных машинах. Мы реализуем этот вариант.
Сначала перечислим, какие переменные нам нужно сохранять в EEPROM:

  1. точки калибровки
  2. значения максимальной-минимальной задаваемой температуры и шага настройки температуры
  3. значение заданной температуры
  4. коэффициенты ПИД-регулятора

Значение кухонного таймера не сохраняем – будем считать, что пользователь после выключения питания должен сам каждый раз настраивать таймер печки.
Все эти настройки задаются пользователем посредством поворотов энкодера и дальнейшего краткого нажатия на пользовательскую кнопку. При этом помним, что количество циклов чтения-записи EEPROM все-таки ограничено, поэтому лишний раз одну и ту же информацию (например, если пользователь выбрал то же самое значение какой-то настройки, что и было) не перезаписывать. Поэтому перед каждым изменением __eeprom-переменной проверяем, а нужно ли её переписывать:

//если значение изменилось - перезаписываем в энергонезависимой памяти if (ADCTemperature.atMinTemperatureValue != (uint16_t)VMEncoderCounter.ecntValue) { ADCTemperature.atMinTemperatureValue = (uint16_t)VMEncoderCounter.ecntValue; EEP_MinTemperature = ADCTemperature.atMinTemperatureValue; }

С чтением настроек из EEPROM тоже все просто – при инициализации «текущих» настроек мы просто считываем значение из энергонезависимой памяти:

ADCTemperature.atMinTemperatureValue = EEP_MinTemperature;

Для того, чтобы наше устройство с самого начала имело какие-нибудь настройки в EEPROM, проект для первой загрузки можно скомпилировать с инициализацией этих переменных:

Eeprom uint16_t EEP_MinTemperature = 20; … //массив для хранения точек калибровки в энергонезависимой памяти __eeprom TCalibrationData EEP_CalibrationData = {{20, 1300}, {300, 4092}};

В этом случае компилятор инициализирует __eeprom переменные до начала работы с основной функцией. Чтобы получить файл с энергонезависимой памятью (.eep), нужно залезть в следующие настройки:
Project->Options..->Linker->Extra Options
Если галочка «Use command line options» не стоит, поставьте её и добавьте строку
-Ointel-standard,(XDATA)=.eep
Компилируем сначала проект с инициализированными переменными, сохраняем eep-файл отдельно; затем убираем инициализацию при создании переменных.

Вот и все – наша печка готова!

Обновлено 16.12.15. Всем привет. Рассмотрев в прошлой статье взаимодействие кнопок с контроллером, в этой записи разберем память МК AVR EEPROM (электрически стираемая ППЗУ), которая является энергонезависимой и имеет ресурс примерно в 100 000 циклов записи/чтения. Зачем нам нужна такая память с ограниченным числом обращений к ней? Такая память идеально подходит для хранения констант и исходных параметров, которые мы можем задать в начале программы, при помощи тех же кнопок.

Следует отметить, что некоторые производители комбинируют память типа EEPROM с SRAM. При прекращении подачи рабочего напряжения содержимое памяти переносится с SRAM в EEPROM, благодаря чему достигают короткого цикла записи не приводящему к износу.

Теперь рассмотрим как обращаться к ней. Для программирования памяти EEPROM используются три регистра, расположенные в области ввода/вывода памяти SRAM: восьмиразрядный регистр адреса EEAR или два регистра EEARH и EEARL; восьмиразрядный регистр данных EEDR; восьмиразрядный регистр управления EECR. когда происходит процесс записи, байт данных адресуется регистром адреса и заносится в регистр данных. В процессе чтения из памяти в регистр данных записывается содержимое ячейки EEPROM, адресуемой регистром адреса.

В книге Евстифеева, справочнике по микроконтроллерам (литературу я приводил в статье №1), описаны программные примеры для записи/чтения. Давайте разберем программу:

Реализация функции записи:

void EEPROM_write (unsigned int uiAddress, unsigned char uoData)
{
while (EECR & (1<
EEAR = uiAddress; //Проинициализировать регистр адреса
EEDR = uoData ; //Проинициализировать регистр данных
EECR |= (1< //Установить флаг EEMWE
EECR |= (1<< EEWE); //Начать запись в EEPROM
}

Разберем программу.
1. EEWE является разрядом регистра (рисунок ниже) EECR и отвечает за разрешение записи в EEPROM, если установлен в 1, то происходит запись в EEPROM , при условии что EEMWE установлен в 1.
2. Загружаем адрес в регистр адреса EEAR

Разряды регистра управления EECR:
EERIE — разрешение прерывания от EEPROM;
EEMWE — управление разрешением записи в EEPROM;
EEWE — разрешение записи в EEPROM;
EERE — разрешение чтения из EEPROM.

3. Загружаем байт данных в регистр данных EEDR.
4. EEMWE – управление разрядом разрешения записи в EEPROM. Этот флаг отвечает за функционирование разряда разрешения записи EEWE. При установке в 1 запись разрешается, если 0, то при установке EEWE в 1 запись в память не произойдет. После программной установки EEMWE сбрасывается через 4 машинных цикла.
5. Записываем данные в память.

Здесь есть один нюанс . Если планируется, периодически записывать данные в EEPROM во время выполнения программы, при самопрограммировании микроконтроллера, то необходимо знать, что запись в EEPROM не может одновременно выполняться с записью во Flash память, поэтому выше после первого пункта необходимо добавить следующий пункт:

— дождаться завершения записи во Flash-память программ, т.е. ждать пока не сброситься флаг SPMEN регистра SPMCR, тогда после этой строки необходимо добавить еще одно циклическое условие:

while (SPMCR &(1<// Завершение записи во Flash память

Теперь разберем функцию чтения:

Unsigned char EEPROM_write (unsigned int uiAddress)
{
while (EECR & (1<//ждем завершения предыдущей записи
EEAR = uiAddress; //Проинициализировать регистр адреса
EECR |= (1<
return EEDR;
}

Здесь все почти также, только в функцию передается адрес переменной, инициализируем его и разрешаем чтение по этому адресу. Возвращаем данные.

Но прежде, чем использовать алгоритм записи или чтения EEPROM, необходимо объявить переменную, которая будет распределена в пределах области EEPROM. Для этого в библиотеке eeprom.h программной среды WinAVR определен специальный атрибут EEMEM. Например объявим переменную без знакового целочисленного типа с атрибутом.

EEMEM uint8_t eeprom_х; // объявим переменную.
х –переменная;
uint8_t – целочисленный без знаковый тип, имеющие точно указанную разрядность, в данном случае 8 бит и предназначен для переносимости программ.
EEMEM – атрибут, заставляющий переменную быть распределенной в пределах раздела.eeprom. Данный атрибут определен в файле eeprom.h и выглядит он следующим образом.

#ifndef EEMEM
#define EEMEM__attribute__ ((section («.eeprom»)))
#endif

Для работы с данными в библиотеке уже прописаны функции:
для чтения
uint8_t eeprom_read_byte (const uint8_t *addr)
Аргументом функций eeprom_read_... является адрес переменной в EEPROM, а результатом — значение переменной в EEPROM.
для записи
void eeprom_write_byte (uint8_t *addr, uint8_t value)
Аргументами функций eeprom_write_... являются адрес в EEPROM, куда записать данные и значение которое нужно записать.

Ну что ж все это пережевав на по следок программный пример в целом. Передадим в EEPROM данные и считаем. Используя AVR и , выведем результат.

#include
#include
#include
#include «lcd.h»

uint8_t EEMEM eepro_х; /* такая переменная должна быть всегда глобальной и служит для передачи своего адреса в область EEPROM*/
char word="Hello";

main ()
{
uint8_t eepro_х1 = 100; /*вторая переменная для передачи данных*/
/*Давайте запишем переменную в память*/
eeprom_write_byte (&eeprom_x, eeprom_x1); /*передаем в функцию адрес переменной и значение которое запишем по этому адресу*/
/*теперь убедимся, что в памяти у нас хранится значение 100, для этого обнулим текущее значение переменной х и присвоим считанное значение из памяти*/
eeprom_х1 = 0;
/*считаем содержимое памяти*/
x1 = eeprom_read_byte (&eeprom_x); // взятие адреса переменной
sprintf (word,"V_eeprom x1=%3d",eeprom_x1);
PrintString (word);
}

Ниже, на рисунке представлен результат
Если в программе изначально передаются какие то константы для хранения в памяти EEPROM, то при прошивке необходимо залить файл с расширением.eep, который будет создан компилятором и размещен в той же директории что и рабочие файлы.

На этом пока все. Здесь дан краткий обзор для работы с такой памятью. Конечно есть куча нюансов, но это уже тонкости. В следующей статье рассмотрим ШИМ (широтно-импульсную модуляцию) и плавно перейдем к следующему проекту попробуем сконструировать «мозги» для любительского станка ЧПУ. Всем пока.

Обнуление памяти EEPROM

Пример циклом проходим по всем ячейкам памяти, и записывает в них нули.

// Подключение библиотеки для работы с EEPROM. #include "EEPROM.h" void setup() { // Проход всех ячеек(байтов) и запись в них нулей. for (int i = 0; i < EEPROM.length(); i++) EEPROM.update(i, 0); } void loop() { // Пустой цикл... }


Откат к заводским настройкам

Если вы хотите вернуть память к заводским настройкам необходимо заменить 0 на 255, т.е. записать не нули, а число 255. Таким образом, в дальнейшем при помощи функции isNaN() возможно проверить была ли произведена запись в память EEPROM или нет.

// Подключение библиотеки для работы с EEPROM. #include "EEPROM.h" void setup() { // Проход всех ячеек(байтов) и запись в них чисел 255. for (int i = 0; i < EEPROM.length(); i++) EEPROM.update(i, 255); } void loop() { // Пустой цикл... }

Расскажи о нас

Сообщение

Если у Вас есть опыт в работе с Arduino и собственно есть время для творчества, мы приглашаем всех желающих стать авторами статей публикуемых на нашем портале. Это могут быть как уроки, так и рассказы о ваших экспериментах с Arduino. Описание различных датчиков и модулей. Советы и наставления начинающим. Пишите и размещайте свои статьи в

Микросхемы разного назначения применяются в составе электроники современной техники. Огромное многообразие такого рода компонентов дополняют микросхемы памяти. Этот вид радиодеталей (среди электронщиков и в народе) зачастую называют просто – чипы. Основное назначение чипов памяти – хранение определённой информации с возможностью внесения (записи), изменения (перезаписи) или полного удаления (стирания) программными средствами. Всеобщий интерес к чипам памяти понятен. Мастерам, знающим как программировать микросхемы памяти, открываются широкие просторы в области ремонта и настройки современных электронных устройств.

Микросхема памяти — это электронный компонент, внутренняя структура которого способна сохранять (запоминать) внесённые программы, какие-либо данные или одновременно то и другое.

По сути, загруженные в чип сведения представляют собой серию команд, состоящих из набора вычислительных единиц микропроцессора.

Следует отметить: чипы памяти всегда являются неотъемлемым дополнением микропроцессоров – управляющих микросхем. В свою очередь микропроцессор является основой электроники любой современной техники.

Набор электронных компонентов на плате современного электронного устройства. Где-то среди этой массы радиодеталей приютился компонент, способный запоминать информацию

Таким образом, микропроцессор управляет , а чип памяти хранит сведения, необходимые микропроцессору.

Программы или данные хранятся в чипе памяти как ряд чисел — нулей и единиц (биты). Один бит может быть представлен логическими нулем (0) либо единицей (1).

В единичном виде обработка битов видится сложной. Поэтому биты объединяются в группы. Шестнадцать бит составляют группу «слов», восемь бит составляют байт — «часть слова», четыре бита — «кусочек слова».

Программным термином для чипов, что используется чаще других, является байт. Это набор из восьми бит, который может принимать от 2 до 8 числовых вариаций, что в общей сложности даёт 256 различных значений.

Для представления байта используется шестнадцатеричная система счисления, где предусматривается использование 16 значений из двух групп:

  1. Цифровых (от 0 до 9).
  2. Символьных (от А до F).

Поэтому в комбинациях двух знаков шестнадцатеричной системы также укладываются 256 значений (от 00h до FFh). Конечный символ «h» указывает на принадлежность к шестнадцатеричным числам.

Организация микросхем (чипов) памяти

Для 8-битных чипов памяти (наиболее распространенный тип) биты объединяются в байты (8 бит) и сохраняются под определённым «адресом».

По назначенному адресу открывается доступ к байтам. Вывод восьми битов адреса доступа осуществляется через восемь портов данных.


Организация структуры запоминающего устройства. На первый взгляд сложный и непонятный алгоритм. Но при желании разобраться, понимание приходит быстро